384 research outputs found

    Transfer Learning for Neural Semantic Parsing

    Full text link
    The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence modeling and compare their performance with an independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to a target task with smaller labeled data. We see absolute accuracy gains ranging from 1.0% to 4.4% in our in- house data set, and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks.Comment: Accepted for ACL Repl4NLP 201

    Hybrid data fidelity term approach for quantitative susceptibility mapping

    Get PDF
    PURPOSE: Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms. METHODS: We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. RESULTS: The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. CONCLUSIONS: The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods

    A world of interstices: A fuzzy logic approach to the analysis of interpretative maps

    Get PDF
    This paper proposes a methodology based on fuzzy logic to analyze specific mental maps at world scale. Mental maps at all scales and especially at world scale raise specific issues related to the imprecision of the drawing and uncertainty linked to the object drawn. Here, the sample studied was asked to divide the world in regions. The interpretation dimension when building regions reinforce both the uncertainty and imprecision. The fuzzy logic is used here to focus on the world regions limits. It allows providing cartography of the vagueness of regions borders

    Ultrasound Matrix Imaging. I. The focused reflection matrix and the F-factor

    Full text link
    This is the first article in a series of two dealing with a matrix approach \alex{for} aberration quantification and correction in ultrasound imaging. Advanced synthetic beamforming relies on a double focusing operation at transmission and reception on each point of the medium. Ultrasound matrix imaging (UMI) consists in decoupling the location of these transmitted and received focal spots. The response between those virtual transducers form the so-called focused reflection matrix that actually contains much more information than a raw ultrasound image. In this paper, a time-frequency analysis of this matrix is performed, which highlights the single and multiple scattering contributions as well as the impact of aberrations in the monochromatic and broadband regimes. Interestingly, this analysis enables the measurement of the incoherent input-output point spread function at any pixel of this image. A focusing criterion can then be built, and its evolution used to quantify the amount of aberration throughout the ultrasound image. In contrast to the standard coherence factor used in the literature, this new indicator is robust to multiple scattering and electronic noise, thereby providing a highly contrasted map of the focusing quality. As a proof-of-concept, UMI is applied here to the in-vivo study of a human calf, but it can be extended to any kind of ultrasound diagnosis or non-destructive evaluation.Comment: 14 pages, 3 figure

    Ultrasound Matrix Imaging. II. The distortion matrix for aberration correction over multiple isoplanatic patches

    Full text link
    This is the second article in a series of two which report on a matrix approach for ultrasound imaging in heterogeneous media. This article describes the quantification and correction of aberration, i.e. the distortion of an image caused by spatial variations in the medium speed-of-sound. Adaptive focusing can compensate for aberration, but is only effective over a restricted area called the isoplanatic patch. Here, we use an experimentally-recorded matrix of reflected acoustic signals to synthesize a set of virtual transducers. We then examine wave propagation between these virtual transducers and an arbitrary correction plane. Such wave-fronts consist of two components: (i) An ideal geometric wave-front linked to diffraction and the input focusing point, and; (ii) Phase distortions induced by the speed-of-sound variations. These distortions are stored in a so-called distortion matrix, the singular value decomposition of which gives access to an optimized focusing law at any point. We show that, by decoupling the aberrations undergone by the outgoing and incoming waves and applying an iterative strategy, compensation for even high-order and spatially-distributed aberrations can be achieved. As a proof-of-concept, ultrasound matrix imaging (UMI) is applied to the in-vivo imaging of a human calf. A map of isoplanatic patches is retrieved and is shown to be strongly correlated with the arrangement of tissues constituting the medium. The corresponding focusing laws yield an ultrasound image with an optimal contrast and a transverse resolution close to the ideal value predicted by diffraction theory. UMI thus provides a flexible and powerful route towards computational ultrasound.Comment: 17 pages, 8 figure

    Contextual Slot Carryover for Disparate Schemas

    Full text link
    In the slot-filling paradigm, where a user can refer back to slots in the context during a conversation, the goal of the contextual understanding system is to resolve the referring expressions to the appropriate slots in the context. In large-scale multi-domain systems, this presents two challenges - scaling to a very large and potentially unbounded set of slot values, and dealing with diverse schemas. We present a neural network architecture that addresses the slot value scalability challenge by reformulating the contextual interpretation as a decision to carryover a slot from a set of possible candidates. To deal with heterogenous schemas, we introduce a simple data-driven method for trans- forming the candidate slots. Our experiments show that our approach can scale to multiple domains and provides competitive results over a strong baseline.Comment: Accepted at Interspeech 201
    • …
    corecore